|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Independent studies conducted as tutorial courses are available in limited number to qualified degree-seeking students. Independent study projects must be approved by the Dean and the faculty member to whom these are assigned. The approval process assures compliance with the degree plans, academic credibility and G.P.A. The topics for independent study are limited. A statement must be prepared by the student, in collaboration with the faculty, providing a title, objectives, requirements for course, general outline, and bibliography for the study. Generally, no catalog courses may be taken on an independent study basis. Theory related courses will be assigned a letter grade, and clinically focused courses will be assigned a P/NC. The independent study is approved, registration must be completed at enrollment and tuition paid along with other fees.
-
4.00 Credits
This course provides an algebra-based introduction to mechanics, heat and thermodynamics, and wave motion. Key concepts include forces and Newton's laws of motion, Newton's law of gravitation, energy and momentum, heat and temperature, and sound. These concepts are further explored in laboratory sessions. The course consists of three lectures and one laboratory session per week. Prerequisite: MA 145 (or equivalent).
-
4.00 Credits
This is a continuation of PC 125 providing and algebra-based introduction to electricity and magnetism. Topics covered include electric charge, current, and simple electrical circuits. Basic ideas in optics and the physics of the atom are also covered. The course consists of three lectures and one laboratory session per week. Prerequisite: PC 125.
-
3.00 Credits
This course provides an overview of astronomical topics and is designed primarily for non-science majors. Topics include the birth, evolution, and death of stars; white dwarfs, neutron stars and black holes; and galaxies and cosmology. Astronomy is a quantitative science and students are expected to solve numerical problems. Prerequisite: MA 145 or 221 or equivalent.
-
3.00 Credits
This course provides an overview of the bodies of the solar system, the physical processes responsible for their observed properties, their interactions, and the formation of the sun, the earth, and the solar system as a whole. The course, designed primarily for non-science majors, aims to develop students' understanding of the origin and nature of our corner of the universe, as well as an understanding of the methods used to uncover the properties of the bodies of the solar system. Prerequisite: MA 145 or 221 or equivalent.
-
4.00 Credits
This course is a calculus-based introduction to classical mechanics. Key concepts include Newton's laws of motion, Newton's law of gravitation, conservation of energy and momentum, and rotational motion. These concepts are further explored in the laboratory sessions where basic data analysis techniques are also introduced. The course consists of three lectures and one laboratory session per week. Prerequisite or co-requisite: MA 171.
-
4.00 Credits
This is a continuation of PC 225 providing a calculus-based introduction to electricity and magnetism. Key concepts include electric force and charge, the electric field, Gauss's law, the electrostatic potential, electrical energy, current, simple circuits, the magnetic force and field, Ampere's law, and electromagnetic induction. The course consists of three lectures and one laboratory session per week. Prerequisite: PC 225. Prerequisite or co-requisite: MA 172.
-
1.00 - 3.00 Credits
The topics of this course will be determined by student needs and interests.
-
4.00 Credits
This course provides an introduction to geometric optics and modern physics. Topics include special relativity, the wave-particle duality of light and matter, Bohr's model of the hydrogen atom, and the Schroedinger equation. These topics are motivated by a discussion of the failure of classical physics to explain certain phenomena such as the photoelectric effect. More sophisticated data analysis techniques than those discussed in PC 225 are presented. The course consists of three lectures and one laboratory session per week. Prerequisite: PC 226.
-
4.00 Credits
This course provides an introduction to electronics. Topics include DC and AC circuits, semiconductors, diodes, rectifiers, regulators, bi-polar transistors, field effect transistors, operational amplifiers, timers, logic gates, flip-flops, and many applications. The course consists of three lectures and one laboratory session per week. Prerequisite: PC 226.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Cookies Policy |
Terms of Use
|
Institutional Membership Information
|
Copyright 2006 - 2025 AcademyOne, Inc.
|
|
|