-
Institution:
-
University of Massachusetts Amherst
-
Subject:
-
-
Description:
-
This course will introduce students to Bayesian data analysis, including modeling and computation. We will begin with a description of the components of a Bayesian model and analysis(including the likelihood, prior, posterior, conjugacy, non-informativeness, credible intervals, etc.), and illustrate these objects in simple models. We will then develop Bayesian approaches to more complicated models. The course will introduce Markov chain Monte Carlo methods, and students will have the opportunity to learn to use the WinBUGS and R open source statistical packages for computation.
-
Credits:
-
3.00
-
Credit Hours:
-
-
Prerequisites:
-
-
Corequisites:
-
-
Exclusions:
-
-
Level:
-
-
Instructional Type:
-
Lecture
-
Notes:
-
-
Additional Information:
-
-
Historical Version(s):
-
-
Institution Website:
-
-
Phone Number:
-
(413) 545-0111
-
Regional Accreditation:
-
New England Association of Schools and Colleges
-
Calendar System:
-
Semester
Detail Course Description Information on CollegeTransfer.Net
Copyright 2006 - 2025 AcademyOne, Inc.