STATISTC 697B - ST- Bayesian Statistics

Institution:
University of Massachusetts Amherst
Subject:
Description:
This course will introduce students to Bayesian data analysis, including modeling and computation. We will begin with a description of the components of a Bayesian model and analysis(including the likelihood, prior, posterior, conjugacy, non-informativeness, credible intervals, etc.), and illustrate these objects in simple models. We will then develop Bayesian approaches to more complicated models. The course will introduce Markov chain Monte Carlo methods, and students will have the opportunity to learn to use the WinBUGS and R open source statistical packages for computation.
Credits:
3.00
Credit Hours:
Prerequisites:
Corequisites:
Exclusions:
Level:
Instructional Type:
Lecture
Notes:
Additional Information:
Historical Version(s):
Institution Website:
Phone Number:
(413) 545-0111
Regional Accreditation:
New England Association of Schools and Colleges
Calendar System:
Semester

The Course Profile information is provided and updated by third parties including the respective institutions. While the institutions are able to update their information at any time, the information is not independently validated, and no party associated with this website can accept responsibility for its accuracy.

Detail Course Description Information on CollegeTransfer.Net

Copyright 2006 - 2025 AcademyOne, Inc.