-
Institution:
-
California Institute of Technology
-
Subject:
-
Aerospace
-
Description:
-
Introduction to the use of numerical methods in the solution of solid mechanics and materials problems. First term: geometrical representation of solids. Automatic meshing. Approximation theory. Interpolation error estimation. Optimal and adaptive meshing. Second term: variational principles in linear elasticity. Finite element analysis. Error estimation. Convergence. Singularities. Adaptive strategies. Constrained problems. Mixed methods. Stability and convergence. Variational problems in nonlinear elasticity. Consistent linearization. The Newton-Rahpson method. Bifurcation analysis. Adaptive strategies in nonlinear elasticity. Constrained finite deformation problems. Contact and friction. Third term: time integration. Algorithm analysis. Accuracy, stability, and convergence. Operator splitting and product formulas. Coupled problems. Impact and friction. Subcycling. Space-time methods. Inelastic solids. Constitutive updates. Stability and convergence. Consistent linearization. Applications to finite deformation viscoplasticity, viscoelasticity, and Lagrangian modeling of fluid flows. Not offered 2012–13.
-
Credits:
-
9.00
-
Credit Hours:
-
-
Prerequisites:
-
AM 125 abc or equivalent; ACM 100 abc or equivalent; CE/AM/Ae 108 abc or equivalent or instructor’s permission; Ae/AM/CE/ME 102 abc or equivalent; Ae/Ge/ME 160 ab desirable or taken concurrently.
-
Corequisites:
-
-
Exclusions:
-
-
Level:
-
-
Instructional Type:
-
Lecture
-
Notes:
-
-
Additional Information:
-
-
Historical Version(s):
-
-
Institution Website:
-
-
Phone Number:
-
(626) 395-6811
-
Regional Accreditation:
-
Western Association of Schools and Colleges
-
Calendar System:
-
Quarter
Detail Course Description Information on CollegeTransfer.Net
Copyright 2006 - 2026 AcademyOne, Inc.