ESD 753J - Statistical Learning and Data Mining

Institution:
Massachusetts Institute of Technology
Subject:
Description:
Advanced introduction to the theory and application of statistics and data-mining, concentrating on techniques used in management science, finance, consulting, engineering systems, and bioinformatics. First half builds the statistical foundation for the second half, with topics selected from sampling, including the bootstrap, theory of estimation, testing, nonparametric statistics, analysis of variance, categorical data analysis, regression analysis, MCMC, EM, Gibbs sampling, and Bayesian methods. Second half focuses on data-mining, supervised learning, and multivariate analysis. Topics selected from logistic regression; principal components and dimension reduction; discrimination and classification analysis, including trees (CART), partial least squares, nearest neighbor and regularized methods, support vector machines, boosting and bagging, clustering, independent component analysis, and nonparametric regression. Uses statistics software packages, such as R, S+, MATLAB, and SAS, for data analysis and data-mining.
Credits:
4.00
Credit Hours:
Prerequisites:
Prereq: 6.431, 15.085, or 18.440; 18.06 or 18.700
Corequisites:
Exclusions:
Level:
Instructional Type:
Lecture
Notes:
Additional Information:
Historical Version(s):
Institution Website:
Phone Number:
(617) 253-1000
Regional Accreditation:
New England Association of Schools and Colleges
Calendar System:
Four-one-four plan

The Course Profile information is provided and updated by third parties including the respective institutions. While the institutions are able to update their information at any time, the information is not independently validated, and no party associated with this website can accept responsibility for its accuracy.

Detail Course Description Information on CollegeTransfer.Net

Copyright 2006 - 2025 AcademyOne, Inc.