-
Institution:
-
Massachusetts Institute of Technology
-
Subject:
-
-
Description:
-
Introduction to computational theories of human cognition. Focuses on principles of inductive learning and inference, and the representation of knowledge. Computational frameworks include Bayesian and hierarchical Bayesian models, probabilistic graphical models, nonparametric statistical models and the Bayesian Occam's razor, sampling algorithms for approximate learning and inference, and probabilistic models defined over structured representations such as first-order logic, grammars, or relational schemas. Applications to understanding core aspects of cognition, such as concept learning and categorization, causal reasoning, theory formation, language acquisition, and social inference. Graduate students complete a final project.
-
Credits:
-
3.00
-
Credit Hours:
-
-
Prerequisites:
-
Prereq: Permission of instructor
-
Corequisites:
-
-
Exclusions:
-
-
Level:
-
-
Instructional Type:
-
Lecture
-
Notes:
-
-
Additional Information:
-
-
Historical Version(s):
-
-
Institution Website:
-
-
Phone Number:
-
(617) 253-1000
-
Regional Accreditation:
-
New England Association of Schools and Colleges
-
Calendar System:
-
Four-one-four plan
Detail Course Description Information on CollegeTransfer.Net
Copyright 2006 - 2026 AcademyOne, Inc.