COMPSCI 181 - Intelligent Machines: Perception, Learning, and Uncertainty

Institution:
Harvard University
Subject:
Description:
Introduction to artificial intelligence, focusing on problems of perception, reasoning under uncertainty, and especially machine learning. Supervised learning algorithms. Decision trees. Ensemble learning and boosting. Neural networks, multi-layer perceptrons and applications. Support vector machines and kernel methods. Clustering and unsupervised learning. Probabilistic methods, parametric and non-parametric density estimation, maximum likelihood and maximum a posteriori estimates. Bayesian networks and graphical models: representation, inference and learning. Hidden Markov models. Markov decision processes and reinforcement learning. Computational learning theory.
Credits:
4.00
Credit Hours:
Prerequisites:
Corequisites:
Exclusions:
Level:
Instructional Type:
Lecture
Notes:
Additional Information:
Historical Version(s):
Institution Website:
Phone Number:
(617) 495-1000
Regional Accreditation:
New England Association of Schools and Colleges
Calendar System:
Semester

The Course Profile information is provided and updated by third parties including the respective institutions. While the institutions are able to update their information at any time, the information is not independently validated, and no party associated with this website can accept responsibility for its accuracy.

Detail Course Description Information on CollegeTransfer.Net

Copyright 2006 - 2025 AcademyOne, Inc.