-
Institution:
-
Harvard University
-
Subject:
-
-
Description:
-
Introduction to artificial intelligence, focusing on problems of perception, reasoning under uncertainty, and especially machine learning. Supervised learning algorithms. Decision trees. Ensemble learning and boosting. Neural networks, multi-layer perceptrons and applications. Support vector machines and kernel methods. Clustering and unsupervised learning. Probabilistic methods, parametric and non-parametric density estimation, maximum likelihood and maximum a posteriori estimates. Bayesian networks and graphical models: representation, inference and learning. Hidden Markov models. Markov decision processes and reinforcement learning. Computational learning theory.
-
Credits:
-
4.00
-
Credit Hours:
-
-
Prerequisites:
-
-
Corequisites:
-
-
Exclusions:
-
-
Level:
-
-
Instructional Type:
-
Lecture
-
Notes:
-
-
Additional Information:
-
-
Historical Version(s):
-
-
Institution Website:
-
-
Phone Number:
-
(617) 495-1000
-
Regional Accreditation:
-
New England Association of Schools and Colleges
-
Calendar System:
-
Semester
Detail Course Description Information on CollegeTransfer.Net
Copyright 2006 - 2025 AcademyOne, Inc.