-
Institution:
-
Brown University
-
Subject:
-
-
Description:
-
The purpose of the course is to lay the foundation for the development and analysis of numerical methods for solving systems of ordinary differential equations. With a dual emphasis on analysis and efficient implementations, we shall develop the theory for multistage methods (Runge-Kutta type) and multi-step methods (Adams/BDF methods). We shall also discuss efficient implementation strategies using Newton-type methods and hybrid techniques such as Rosenbruck methods. The discussion includes definitions of different notions of stability, stiffness and stability regions, global/local error estimation, and error control. Time permitting, we shall also discuss more specialized topics such as symplectic integration methods and parallel-in-time methods. A key component of the course shall be the discussion of problems and methods designed with the discretization of ODE systems originating from PDE's in mind. Topics include splitting methods, methods for differential-algebraic equations (DAE),deferred correction methods. and order reduction problems for IBVP, TVD and IMEX methods. Part of the class will consist of student presentations on more advanced topics, summarizing properties and known results based on reading journal papers.
-
Credits:
-
1.00
-
Credit Hours:
-
-
Prerequisites:
-
-
Corequisites:
-
-
Exclusions:
-
-
Level:
-
-
Instructional Type:
-
Lecture
-
Notes:
-
-
Additional Information:
-
-
Historical Version(s):
-
-
Institution Website:
-
-
Phone Number:
-
(401) 863-1000
-
Regional Accreditation:
-
New England Association of Schools and Colleges
-
Calendar System:
-
Semester
Detail Course Description Information on CollegeTransfer.Net
Copyright 2006 - 2025 AcademyOne, Inc.