-
Institution:
-
Brown University
-
Subject:
-
-
Description:
-
Filtering (estimation of a "state process" from noisy data) is an important area of modern statistics. It is of central importance in navigation, signal and image processing, control theory and other areas of engineering and science. Filtering is one of the exemplary areas where the application of modern mathematics and statistics leads to substantial advances in engineering. This course will provide a student with the working knowledge sufficient for cutting edge research in the field of nonlinear filtering and its practical applications. Topics will include: hidden Markov models, Kalman and Wiener filters, optimal nonlinear filtering, elements of Ito calculus and Wiener chaos, Zakai and Kushner equations, spectral separating filters and wavelet based filters, numerical implementation of filters. We will consider numerous applications of filtering to speech recognition, analysis of financial data, target tracking and image processing. No prior knowledge in the field is required but a good understanding of the basic Probability Theory (APMA1200 or APMA2630) is important.
-
Credits:
-
1.00
-
Credit Hours:
-
-
Prerequisites:
-
-
Corequisites:
-
-
Exclusions:
-
-
Level:
-
-
Instructional Type:
-
Lecture
-
Notes:
-
-
Additional Information:
-
-
Historical Version(s):
-
-
Institution Website:
-
-
Phone Number:
-
(401) 863-1000
-
Regional Accreditation:
-
New England Association of Schools and Colleges
-
Calendar System:
-
Semester
Detail Course Description Information on CollegeTransfer.Net
Copyright 2006 - 2025 AcademyOne, Inc.