BE 630 - Elements of Neural Computation,Complexity and Learning

Institution:
University of Pennsylvania
Subject:
Description:
Prerequisite(s): A semester course in probability or equivalent exposure to probability (e.g. ESE 530). Non-linear elements and networks: linear and polynomial threshold elements, sigmoidal units, radial basis functions. Finite (Boolean) problems: acyclic networks; Fourier analysis and efficient computation; projection pursuit; low frequency functions. Network capacity: Feedforward networks; Vapnik-Chervnenkis dimension. Learning theory: Valiant's learning model; the sample complexity of learning. Learning algorithms: Perception training, gradient descent algorithms, stochastic approximation. Learning complexity: the intractability of learning; model selection.
Credits:
3.00
Credit Hours:
Prerequisites:
Corequisites:
Exclusions:
Level:
Instructional Type:
Lecture
Notes:
Additional Information:
Historical Version(s):
Institution Website:
Phone Number:
(215) 898-5000
Regional Accreditation:
Middle States Association of Colleges and Schools
Calendar System:
Semester

The Course Profile information is provided and updated by third parties including the respective institutions. While the institutions are able to update their information at any time, the information is not independently validated, and no party associated with this website can accept responsibility for its accuracy.

Detail Course Description Information on CollegeTransfer.Net

Copyright 2006 - 2025 AcademyOne, Inc.