STATS 375 - Inference in Graphical Models

Institution:
Stanford University
Subject:
Description:
Graphical models as a unifying framework for describing the statistical relationships between large sets of variables; computing the marginal distribution of one or a few such variables. Focus is on sparse graphical structures, low-complexity algorithms, and their analysis. Topics include: variational inference; message passing algorithms; belief propagation; generalized belief propagation; survey propagation. Analysis techniques: correlation decay; distributional recursions. Applications from engineering, computer science, and statistics. Prerequisite: EE 278, STATS 116, or CS 228. Recommended: EE 376A or STATS 217. 3 units, Win (Montanari, A)
Credits:
3.00
Credit Hours:
Prerequisites:
Corequisites:
Exclusions:
Level:
Instructional Type:
Lecture
Notes:
Additional Information:
Historical Version(s):
Institution Website:
Phone Number:
(650) 723-2300
Regional Accreditation:
Western Association of Schools and Colleges
Calendar System:
Quarter

The Course Profile information is provided and updated by third parties including the respective institutions. While the institutions are able to update their information at any time, the information is not independently validated, and no party associated with this website can accept responsibility for its accuracy.

Detail Course Description Information on CollegeTransfer.Net

Copyright 2006 - 2025 AcademyOne, Inc.