STATS 305 - Introduction to Statistical Modeling

Institution:
Stanford University
Subject:
Description:
The linear model: simple linear regression, polynomial regression, multiple regression, anova models; and with some extensions, orthogonal series regression, wavelets, radial basis functions, and MARS. Topics: normal theory inference (tests, confidence intervals, power), related distributions (t, chi-square, F), numerical methods (QR, SVD), model selection/regularization (Cp, AIC, BIC), diagnostics of model inadequacy, and remedies including bootstrap inference, and cross-validation. Emphasis is on problem sets involving substantial computations with data sets, including developing extensions of existing methods. Prerequisites: consent of instructor, 116, 200, applied statistics course, CS 106A, MATH 114. 2-4 units, Aut (Owen, A)
Credits:
3.00
Credit Hours:
Prerequisites:
Corequisites:
Exclusions:
Level:
Instructional Type:
Lecture
Notes:
Additional Information:
Historical Version(s):
Institution Website:
Phone Number:
(650) 723-2300
Regional Accreditation:
Western Association of Schools and Colleges
Calendar System:
Quarter

The Course Profile information is provided and updated by third parties including the respective institutions. While the institutions are able to update their information at any time, the information is not independently validated, and no party associated with this website can accept responsibility for its accuracy.

Detail Course Description Information on CollegeTransfer.Net

Copyright 2006 - 2025 AcademyOne, Inc.