COMPSCI 219 - Statistical Data Mining

Institution:
Duke University
Subject:
Computer Science
Description:
Introduction to data mining, including multivariate nonparametric regression, classification, and cluster analysis. Topics include the Curse of Dimensionality, the bootstrap, cross-validation, search (especially model selection), smoothing, the backfitting algorithm, and boosting. Emphasis on regression methods (e.g., neural networks, wavelets, the LASSO, and LARS), classifications methods (e.g., CART, Support vector machines, and nearest-neighbor methods), and cluster analysis (e.g., self-organizing maps, D-means clustering, and minimum spanning trees). Theory illustrated through analysis of classical data sets. Prerequisites: Statistics 114. Instructor: Banks
Credits:
3.00
Credit Hours:
Prerequisites:
Corequisites:
Exclusions:
Level:
Instructional Type:
Lecture
Notes:
Additional Information:
Historical Version(s):
Institution Website:
Phone Number:
(919) 684-8111
Regional Accreditation:
Southern Association of Colleges and Schools
Calendar System:
Semester

The Course Profile information is provided and updated by third parties including the respective institutions. While the institutions are able to update their information at any time, the information is not independently validated, and no party associated with this website can accept responsibility for its accuracy.

Detail Course Description Information on CollegeTransfer.Net

Copyright 2006 - 2025 AcademyOne, Inc.