ACM 105 - Applied Real and Functional Analysis

Institution:
California Institute of Technology
Subject:
Applied and Computational Mathematics
Description:
Lebesgue integral on the line, general measure and integration theory; Lebesgue integral in n-dimensions, convergence theorems, Fubini, Tonelli, and the transformation theorem; normed vector spaces, completeness, Banach spaces, Hilbert spaces; dual spaces, Hahn-Banach theorem, Riesz-Frechet theorem, weak convergence and weak solvability theory of boundary value problems; linear operators, existence of the adjoint. Self-adjoint operators, polar decomposition, positive operators, unitary operators; dense subspaces and approximation, the Baire, Banach-Steinhaus, open mapping and closed graph theorems with applications to differential and integral equations; spectral theory of compact operators; LP spaces, convolution; Fourier transform, Fourier series; Sobolev spaces with application to PDEs, the convolution theorem, Friedrich’s mollifiers. Not offered 2012–13.
Credits:
9.00
Credit Hours:
Prerequisites:
Corequisites:
Exclusions:
Level:
Instructional Type:
Lecture
Notes:
Additional Information:
Historical Version(s):
Institution Website:
Phone Number:
(626) 395-6811
Regional Accreditation:
Western Association of Schools and Colleges
Calendar System:
Quarter

The Course Profile information is provided and updated by third parties including the respective institutions. While the institutions are able to update their information at any time, the information is not independently validated, and no party associated with this website can accept responsibility for its accuracy.

Detail Course Description Information on CollegeTransfer.Net

Copyright 2006 - 2026 AcademyOne, Inc.